
Performance Improvement of Web Caching Page
Replacement Algorithms

Deepak Sachan, Dhawaleshwar Rao ch

School of Computer Science,
Lovely Professional University, India.

Abstract- As the number of World-Wide Web users grows, this
increases both network load and server load. Caching can
reduce both loads by migrating copies of server files closer to
the clients that use those files. Several types of caching are
used over the Internet, including client caching, server
caching, and more recently, proxy caching. In this paper, we
present the overview of some popular web caching
replacement algorithms, Least recently used (LRU), Least
frequently used (LFU), SIZE and implementation of these
algorithms to improve the performance of page replacement.

Keywords- World Wide Web, Proxy caching, Web Caching
Replacement Algorithm.

INTRODUCTION

Web caching is a technology used to reduce the
transmission of network traffic. Main focus of web caching
is to enhance accessibility to the Web. It can be beneficial
to a wide spectrum of users including those dependent on
slow network connection as well as those relying on faster
internet connections. The word, caching refers to the
process of saving documents for future use. Web caching,
to reduce traffic load, saves copies of content, obtained
from the Web, closer to the end user‚ in order to improve
accessibility to the content. Some of the main reasons for
which a user would opt for Web caching include the
following:

To increase the bandwidth availability by curbing the
transmission of redundant data‚

For reducing network congestion‚

For improving response times and

For achieving savings in terms of cost.

The fundamental question in Web caching is how we know
if something can be cached or perhaps cannot be cached. It
is not hard to guess that certain types of content may not be
worth caching. For example‚ cookies ‚ personalized content
and dynamically generated content. However‚ it would be
desirable to cache some of these (if it was possible to do so)
for the sake of efficiency‚ by adopting some means or the
other. It may of course be worthwhile to cache content that
is requested often. On the other hand‚ it may not be
beneficial to cache content that is not likely to be requested

frequently. Hence‚ we see that there are many factors that
determine the cache ability of content. [1]

In proxy caching, a proxy server gets HTTP requests from
clients and holds it, and on tracing the object asked for in its
cache, gives to the client. If the object requested not found
in the cache, then the request is send on behalf of the user to
the origin server.

Fig.1 Proxy server Caching.

CACHE DEPLOYMENT OPTIONS [7]

WWW caching provides an efficient remedy to the latency
problem by bringing documents closer to clients. Caching
can be deployed at various points in the Internet: within the
client browser, at or near the server to reduce the server
load, or at a proxy server.

- Forward Proxy Caching

- Reverse Proxy Caching

- Transparent Caching.

Forward Proxy Caching: In forward proxy caching, caches
are generally positioned at the edge of a network. This is
done so that a large number of internal consumers may be
serviced. Placement of proxy caches can lead to bandwidth
savings, quicker response times, and enhanced accessibility
to static Web objects. However, proxy cache placement
could become a single point of failure in the network which
can cause problem.

Deepak Sachan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3112 - 3115

3112

Fig.2 Forward Proxy Caching

Reverse proxy caching: In reverse proxy caching, caches
are placed near the source of the content rather than the
destination of the content. This placement of caches is
helpful for servers that counters a large number of requests
and desire to maintain a superior quality of service.

Transparent Caching: In transparent caching, the caches
intercept HTTP requests and anticipate them to Web cache
servers. Transparent proxy caching overcomes the problem
of configuration of Web browsers encountered in proxy
caching. Transparent caching avoids the need for
configuring browsers of users.

PROS AND CONS OF WEB CACHING

Web caching system when properly deployed can provide
substantial of bandwidth wastage. This leads to cost
savings‚ network traffic reduction‚ improved access and
better content availability. Content may be fetched from
nearby caches instead of faraway origin servers. This also
helps when connections to the origin servers are not readily
available. If updation of web content is not done regularly
then they may be returning stale content to the users. If
content is not found in a cache then a cache miss occurs and
this results in an increase in the response time.

There are many other factors which causes in bottleneck of
web caching like poor configuration, cost consideration,
Quality of service (QoS), effort involved in setup of cache
and security and privacy issues. [7]

PERFORMANCE METRICS

Replacement policies rely on key metrics to achieve their
goals. Such policies attempt to optimize various
performance metrics, including the file hit ratio, the byte hit
ratio, the average download time, and the delay saving
ratio. [2]

FILE HIT RATIO: The hit ratio is the percentage of all
requests that can be satisfied by searching the cache for a
copy of the requested object.

BYTE HIT RATIO: The byte hit ratio represents the
percentage of all data that is transferred directly from the
cache rather than from the origin server.

Metric Definition

File hit ratio ∑ ࡾࣕࢎ

∑ ࡾࣕࢌ

Byte hit ratio ∑ .ࡿ ࡾࣕࢎ

∑ .ࡿ ࡾࣕࢌ

Saved
bandwidth

Directly related to
byte hit ratio

Delay saving
ratio

∑ .ࢊ ࡾࣕࢎ

∑ .ࢊ ࡾࣕࢌ

Average
download time

∑ ࡾࣕࢊ . ሺ െ ሻࢌ|ࢎ
‖ࡾ‖

Notation: Si =size of document i
fi =total no of requests for document i
hi =total number of hits for documents i
di =mean fetch delay from server for
document i
R= set of all accessed documents
||R||=size of R

Figure 3.various performance metrics and definition.

COMMON WEB CACHING REPLACEMENT ALGORITHMS

 There are several ways to categorize cache replacement
algorithms for an overview of Web cache replacement
strategies: [1]

- Traditional algorithms

- Key based algorithms

- Cost based algorithms

Traditional algorithms

Least Recently Used (LRU) evicts the object from the
cache that was requested for the least number of times.

Least Frequently Used (LFU) evicts the object that was
retrieved least frequently from the cache. [3]

Key based algorithms

Key based replacement algorithms evict data from caches
on the basis of a primary key. Ties may be broken by the
use of secondary or tertiary keys or in other ways. [4]

SIZE, this algorithm removes large size documents first. As
it removes big objects first, therefore keeps small objects in
the cache, resulting high request hit rate.

LRU-Min, LRU- Threshold, HYPER-G are the main key-
based page replacement algorithms.

Deepak Sachan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3112 - 3115

3113

Cost based algorithms

The algorithms in this class evicts object from cache on the
basis of a cost function based on parameters such as the last
access time, the time at which an object was put into the
cache, the expiration time and so on.[5]

Greedy-Dual-Size (GDS) tags a cost with every object and
expels the object that has the lowest cost or size. It is also
possible to tag a utility function with every object and expel
the object that is least useful for diminishing the total
latency.

Lowest Relative Value, Size-adjusted LRU, Least
Normalized Cost Replacement, Server-assisted scheme,
Hierarchical Greedy Dual, Bolot/Hoschka are some other
useful page replacement algorithms which are generally
used now a days.

PROPOSED WORK

According to definition of SIZE algorithm, it evicts objects
from the cache having largest size. Sometimes, it may be
possible that there is a case of tie between different objects
in a cache. For e.g. we open different sites which having
same size, cached sequentially in cache .so in this case
which site have to be evicted, it’s very difficult to decide.
So to solve this problem, we have to use any secondary
keys as a parameter. In our proposed work, we will use the
Least recently used (LRU) algorithm to solve this type of
problem. That means our secondary parameter will be time
since last access. Using this technique will definitely
improve the performance of page replacement. Hit ratio
will be used as performance metrics.

PRESENT WORK

To implement our proposed work, we prepare an interface
developed in C#. The tool used for development is visual
studio 2010. In this interface we will calculate the hit ratio
separately for LRU, SIZE and our proposed algorithm. We
use dataset of 100 different websites to check our
performance in the basis of hit ratio.

In our interface, we calculate the time of access and size of
webpage simultaneously. Using these values, we able to
evict the object from cache and calculate the hit ratio and
generate a graph of hit ratio values.

Fig.4 Interface of Proposed work.

CONCLUSION AND FUTURE WORK

After checking performance on the basis of hit ratio, using
dataset of 100 different websites, we concluded that
performance of size algorithm is better than least recently
used algorithm. As our proposed algorithm, using time
since last access as a secondary key to overcome the
drawback of size algorithm, it performs better than previous
algorithms.

In future, we can also work on performance improvement
of size algorithm using tertiary key. As we seen in our
implementation result, size algorithm is not able to maintain
the frequency of objects in cache. So to maintain the
frequency, we would use frequency as tertiary key.

Deepak Sachan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3112 - 3115

3114

REFERENCES

[1]. Abdullah balamash and Marwan krunz, “An Overview of Web
Caching Replacement Algorithms”, IEEE Communications Surveys
& Tutorials, 2004, Vol.6 (2).

[2]. Martin Arlitt, Rich Friedrich, and Tai Jin,” Performance Evaluation
of Web Proxy Cache Replacement Policies”, Internet Systems and
Applications Laboratory HP Laboratories, HPL-98-97(R.1) October,
1999.

[3]. Yogesh Niranjan, Shailendra Tiwari,” Design and Implementation of
Page Replacement Algorithm for Web Proxy Caching”, International
journal of Computer Technology & Applications, Vol.4 (2),2013.

[4]. Harshal N. Datir, Yogesh H. Gulhane, P.R. Deshmukh,” Analysis
and Performance Evaluation of Web Caching Algorithms”,
International Journal of Engineering Science and Technology,
feb.2011.

[5]. Vinit A. Kakde, Prof. Sanjay K.Mishra, Prof. Amit Sinhal, Mahendra
S. Mahalle,” Survey of Effective Web Cache Algorithm”,
International Journal of Science and Engineering Investigations, vol.
1, issue 2, March 2012.

 [6]. S.V.Nagaraj, “Web Caching and Its Applications”, Kluwer
Academic Publishers, 2004.

 [7]. Jia Wang,” A Survey of Web Caching Schemes for the Internet”,
Cornell Network Research Group (C/NRG), Department of
Computer Science, Cornell University.

Deepak Sachan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3112 - 3115

3115

